
ulx 536. 25 

ON CCINVECTIVE INSTABILITY OF AN PJCLprJBD FLUID LAYER 
EQUILIBRXUM R&ATIVE TO SPATIAL PERTURBATIONS 

PMM Vo1.42, N-” 2, 1978, pp. 296 -300 

G. Z. GEBSHUNI, E. M, ZHUKHOVITSKII and S. M. IOBSHINA 
(Perm’) 

( Received August 11, 1977 ) 

The convective instability of an inclined fluid layer equilibrium relative to 
normal spatial perturbations is considered. It is found that spatial perturba - 

tions in an inclined layer are the most dangerous, which is supported by ex- 

perimental results [l 1. 

A similar problem of stability involving plane perturbations was earlier considered 

int2,31. 

1. Amplitude squrtionr. Let us consider a plane layer of fluid of thickness 
2h inclined at angle a to the vertical. The disposition of coordinate axes is shown in 

Fig. 1, where the y -axis is horizontal. The layer is heated from below in such a way 

that the mechanical equilibrium of the fluid is ensured, and the temperature gradient is 

constant and vertical 

VT, = -Ay (1.1) 

The dimensic&zss equations for small 
neutral equilibrium perturbations are conven - 

tionally obtained from convection equations in 

the Boussinesq approximation. These equations 
are of the form 

Av + RTy = Qp, (1.2) 

AT = - (v r), div v = 0 

R = gf3Ah4 / (vx) 

Fig. 1 where measurement units are the same as in 
[2 ] and R is the Bayleigh number. 

We consider normal spatial perturbations of the form 

(Q, uv, y,, T, P) - exp i &,g + kzz) (1.3) 

The system of amplitude equations can be derived from (1.2). Eliminating from 
that system amplitudes nv and Vz, and P, for the amplitude of the transverse com- 

ponent of velocity u , and temperature 8 we obtain thesystem of eighth order equations 

A% - ikaR cos ~0’ + kaR sin a0 = 0 (1.4) 

Age + (a” - 1) R cm2 a0 - sin aAu + + cos aA u’ = 0 
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A = da I dxa - k’, k = Jfm, a = kz / k 

where the prime indicates differentiation with respect to the transverse coordinate 5, 
k is the wave vector module, and a is the parameter of spatial perturbations. We 

assume that the layer boundaries are solid and that along these the temperature distri - 
bution is linear with respect to z #, which ensures the fulfillment of the equilibrium con- 
dition (1.1). For the amplitude of perturbations of u and 8 we now have the homo- 
geneous boundary conditions 

u = UI = 0, 8 = 8” = 0, x = *I (1.5) 

The boundary value problem (1.4 ) , (1.5 ) determines the spectrum of critical 
values of the Rayleigh number R. The angle of inclination a and the character - 
istic of spatial perturbations of k and a are taken as parameters. Thelimit caseofplane 

perturbationsconsidered in [ 23 corresponds to k, = 0, i. e. k = k, and a = 1. 

2. Long- wave perturbations. In the limit case of long -wave perturba - 
tions (k < 1) the eigenfunctions and eigenvalues of problem (1.4 ) , (1.5 ) may be 
sought in the form of expansions in powers of the small parameter (ik) 

u = iku, + (ik)2u, + (ik)3u2 + . . . (2.1) 
0 = 8, + ik6, + (ik)%, + . . . , R = R0 + k2R2 + . . . 

Substituting these expansions into (1.4) we obtain thesystem of successive approxim- 
ations 

uOIv - aR, cos cl&, = 0 (2.2) 
&Iv + (a” - 1) R, cos2 cd, - a cos auO”’ = 0 

ulIV - aR, cos aCll’ = R, sin a&, 

Oirv + (a” - 1) R, cos2af3, - a cos aulm = sin a u,,” 

u,Iv - aR, cos a02’ = -274” - aR, cos at& + R,, sin ae, 

8,rv + (a” - 1) R, cos2atZ12 - a cos auam = -20,” + 
(a” - 1) R2 cos2at+, + sin aui” + a cos au,,’ 

(2.3) 

(2.4) 

Boundary conditions for amplitudes of various orders coincide with (1.5). 

System (2.2) with related boundary conditions determines the critical Rayleigh 
number and the form of perturbations with k = 0 and arbitrary a. In the zero ap- 

proximation the amplitude problem has two solutions which differ by their eigenfunction 
parity. Solutions normalized in a specific manner, which are subsequently called 

“even ” , are of the form 

us = - 
ay co9 y 

[ 

sin yx -- (2.5) cosa *SY 

$=cosy F+$+ [ 21, y4=Rocos2a 

The eigenvalues of R. are determined by the transcendental equation 
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tgy -thy =+y3+ 

The “odd” solutions are determined by formulas 

lL = VCOSY cos yx 
0 

~- 
co9 a cos y 9’ 8, = sin TX, y4 = R. cos2 a (2.7) 

The eigenvalues for this part of the spectrum are independent of parameter a and 
are determined by the equation 

sin y = 0; y=n,2n, . . . . Ro= ‘* cw* 
COS2’ =a **’ (2.8 1 

Thus the critical Rayleigh number for instability with respect to perturbations with 
k = 0 is determined by formula 

R. = y4 I cos2 a (2.9) 

where y is the lower root of the characteristic equation (2.6 ) or (2.8 ) . The lower root 
of (2.6) depends on a. When a = 0 we have y = x / 2, withincreasing a the 

critical number y monotonically increases, and y --t 3.927 when a --t 1. The 
lower root (2.8 ) is independent of a and is equal to 3t. The minimal critical number 

Y is shown in Fig. 2 by solid lines as a function of a. It will be seen that in the region 

a < a, = 0.9767 the most dangerous perturbations with k = 0 are of the even 

type, while for a > a, they are of the odd type. 

To decide whether among long-wave perturbations the most dangerous are those 
with k = 0 it is necessary to know the sign of the quadratic correction Rz in ex - 
pansion (2.1). When R, > 0 perturbations with k = 0 yield the minimum cri- 
tical Rayleigh number, hence they are the most dangerous ; when Ra < 0 point 

k = 0 corresponds to the maximum on curve R (k), and the most dangerous are then 

the”cellular ” perturbations with k # 0. 
The quadratic correction Rz is determined by the condition of solvability of the 

nonhomogeneous system (2.4) of second approximation. To establish the condition of 
solvability it is necessary to know the solution of the systems of zero and first order of 
(2.2 ) and (2.3 ) , as well as the solution of the homogeneous problem conjugate of (2.2 ). 
The condition R, (a, a) = 0 makes possible the determination of the critical angle 

of inclination a,. (a) for which the form of instability changes: a transition from per- 

turbations with k = 0 to cellular perturbations takes place. 
The formulas for corrections R, and for critical angles a, in both the even and 

odd cases are very cumbersome and are not presented here. We only show the curve 
that defines the dependence of the critical angle a, on the parameter of spatial per- 
turbations a (Fig. 2). In the limit case a = 1 (k, = 0; for plane perturbations 

see [ 21 ) a,; == 20’46’. In the opposite limit case of a = 0, which corresponds to 
k, = 0 and I%!, + 0 ( “helical” perturbations of the kind of shafts stretched 

along the z -axis ) , a, = 72”53’. The curve in Fig. 2 makes possible the deter - 
mination of the critical angle for any arbitrary value of parameter a. At the point 

a = a+., where the change of”evenness” of the stability level occurs, a,. vanishes. 

3. Numerical solution for arbitrary 7~. Formula (2.9) yields the 
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minimal critical Rayleigh number (with respect to k ) that determines the stability 
limit in the region of angles a < a,. When a > CI~ the absolute minimum on 
neutral curves R (k a, a) is reached at finite wave numbers. To determine in 
that case the limits of stability the boundary value problem (1.4)) (1.5 ) was solved 

numerically. The amplitude equations (1.4) were reduced to 16 first order real equa - 
tions , and the system of these equations was integrated by the F?nnge - Kutta method. 
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Fig. 2 
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Fig. 4 

The minimization of eigenvalues of R with respect to k obtained in this way yielded 
the minimal critical number R, (a, a) and the wave number k, (a, a) of the 
most dangerous perturbations. 

The results appear in Figs. 3 and 4, The set of curves in Fig. 3 represents the de - 
pendence of the minimal critical Rayleigh number R, on the angle of inclination to 

the vertical. Transition to cellular structures is indicated by the dash line, below which 

for a <a, perturbations with k, = 0 are responsible for instability. Sections 
of curves above the dash line relate to cellular perturbations with k, -# 0. When 
a > a, curves R, (a) in the range 0 < a < a, (a) are the same for various 

a. It is evident that throughout the range of angles spatial perturbations are more 
dangerous than plane ones, and that the absolute minimum of the critical Rayleigh 
number is produced by helical perturbations (a = 0). The significant decrease of 
stability for a relatively small deviation of perturbations from the plane structure is 
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noteworthy. When a + 90” “degeneration ” takes place: in a horizontal layer plane 
and spatial preturbations correspond to the same critical Rayleigh number R, = 

106.7 (when the total thickness of the layer is taken as the characteristic length 
R, = 1708). 

The dependence of k, on a is shown in Fig, 4 in the form of curves for several 

spatial perturbation parameters including the curve for plane perturba- 

tions (a = 1). 
a<a,, 

Experiments had shown [l] that the crisis of equilibrium in an inclined layer is 
almost throughout the range of angles related to spatial perturbations. A qualitative 
comparison of calculated and experimental results is, unfortunately, difficult, since the 
former relate to perfectly conducting boundary surfaces, while the experimental results 

relate to a layer of kerosene between Plexiglas plates (thermal conductivity ratio 
x z 0.7). 

Authors thank D. V. Liubimov and V . M . Shikhov for useful discussions. 
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